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From Complex Ginzburg-Landau Equation to Classical Field Theory 

Ervin Goldfain 

Abstract 

Complex Ginzburg-Landau equation (CGLE) is a paradigm for the onset of chaotic patterns and turbulence 

in nonlinear dynamics of extended systems. Here we point out that the underlying connection between 

CGLE and the Navier-Stokes (NS) equation bridges the gap between fluid flows, on the one hand, and the 

mathematics of General Relativity (GR) and classical gauge theory, on the other. The analogy hints to a 

possible link between the transition from laminar to turbulent flows and the mass generation mechanism 

of quantum field theory (QFT).    
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1. Introduction 

Building on the assertion that complex dynamics plays a critical role in foundational 

physics [1-3], the object of this brief report is to show that the roots of both classical gauge 

theory and GR may be traced back to the CGLE. 

The report contains a couple of paragraphs and an Appendix section. First paragraph 

delves into the derivation of the NS equation from CGLE and the role of kinematic 

viscosity in the transition from laminar flows to turbulence. The second paragraph points 

out to research studies looking into the analogy between NS and classical field theory, 

namely GR and Maxwell’s electrodynamics. The analogy suggests an unforeseen parallel 
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between the onset of fluid turbulence via reduction of kinematic viscosity and the mass 

generation mechanism of QFT.       

2. CGLE and the NS equations  

We start by recalling that the CGLE encodes many key properties of out-of-equilibrium 

nonlinear dynamical systems with space-time dependence. As paradigm for the 

emergence of complex behavior, CGLE describes the generic onset of chaos, turbulence, 

and spatiotemporal patterns in extended systems [4-6]. It assumes the standard form  
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in which z  is a complex-valued field, the parameters   and   are positive and the 

coefficients 1c  and 3c  are real. The nonlinear Schrödinger equation (NSE) is a particular 

embodiment of the CGLE in the limit 0  , namely [11], 
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To streamline the presentation, we work in 1+1 space-time and assume 1  . In its 

original formulation and natural units ( 1 ), the quantum-mechanical version of (2a) 

reads 
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where ( , )V x t  is the potential function. The so-called Madelung transformation enables 

one to turn (2b) into the quantum Euler equation for compressible potential flows [7]. In 

particular, taking the complex-valued field in the canonical form, 
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and substituting it into (1)-(2) leads to 
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Here, ( , )u x t  denotes the flow velocity, 
2

m z   stands for the mass density and  
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is the so-called Bohm potential. The flow velocity and its associated probability current 

are given by 

 
1

( , )
i z

u x t S
m m z


      (7) 

 
1

[ ( ) ( )]
2

j u z z z z
mi

         (8) 

Since the Schrödinger equation is conservative, the Madelung transformation naturally 

leads to the Euler equation, which is exclusively valid for inviscid flows. To account for 

fluid viscosity and arrive at the Navier-Stokes equation, one needs to either appeal to an 

extended version of the NSE containing non-conservative terms [7-8] or bring up the 
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concept of kinematic viscosity – a concept linked to the mass of quantum particles [9] as 

in  

 
1

2m
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On account of (9) and for incompressible flows, the Navier-Stokes equation that mirrors 

(5) is given by  
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where p  is the pressure. An alternative expression for the Navier-Stokes equation (10) 

may be obtained using the identity 

 21

2
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where u   represents the vorticity vector [10]. The corresponding Navier-Stokes 

equation reads 
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Referring to (3), the phase of the field amounts to 

 S m udx    (13) 

such that 
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3. From CGLE to abelian gauge theory and GR 

It is instructive to note that there is a wealth of literature dealing with the connection 

between the NS equation, on the one hand, and the formalism of classical electrodynamics 

and GR, on the other. The interested reader is invited to consult a cross-section of 

representative references listed under [12 - 19].   

4. Concluding remarks 

The brief analysis presented here falls in line with our previous findings where, under 

general boundary conditions, the long-run evolution of Renormalization Group flows is 

conjectured to converge on strange attractors [2, 21-22]. Supported by an underlying 

multifractal structure, these attractors provide realistic models for the onset of chaos in 

nonlinear dynamics, the transition to turbulence as well as for the phenomenology of the 

Standard Model near or above the electroweak scale [1, 3]. 

Relation (9) confirms that highly viscous fluids produce a hydrodynamic regime close to 

laminar flows. Interpreted in the context of the minimal fractal manifold [3], the 

kinematic viscosity assumes the role of a mass generation mechanism and corresponds to 

the inverse of the dimensional parameter 
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Stated differently, 
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 APPENDIX 

The aim of this Appendix section is to show that seemingly disparate concepts of quantum 

physics and classical field theory – namely, the Berry phase, gauge potentials and the 

connection coefficients of GR - share a common geometric foundation. 

A) Berry phase in quantum physics 

A quantum system adiabatically transported around a closed path C in the space of 

external parameters acquires a non-vanishing phase (Berry phase, BP in short). Since BP 

is exclusively path-dependent, it provides key insights into the geometric structure of 

quantum mechanics and quantum field theory (QFT). The BP concept is closely tied to 

holonomy, that is, the extent to which some of variables change as other variables or 

parameters defining a system return to their initial values.  

Consider a quantum system described by the time-independent Hamiltonian ( )H t , whose 

associated eigenstate is ( )t  and which is embedded in a slowly changing environment.   

After a periodic evolution of the environmental parameters ( t t T  ), the eigenstate 

returns to itself, apart from a phase angle, 

 ( ) (0)it e     (A1) 

If   denotes the eigenvalue of ( )t , a generalization of the phase angle T   in units 

of 1  is given by the “dynamical phase” 
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 Berry has shown that there is a time-independent (but contour dependent) supplemental 

“geometric phase” entering the phase angle, namely, 

 ( )d C      (A3) 

where 

 ( )
C

C i dr      (A4) 

The dynamical phase d  encodes information about the duration associated with the 

cyclic evolution of the complex vector ( )t . By contrast, (A4) encodes information about 

the geometry of the environment where the transport takes place.  

B) The geometry of gauge and gravitational fields 

The gauge field concept may be built from a straightforward geometric interpretation, 

according to [20]. Consider the parallel transport of a complex vector   round a closed 

rectangular loop. The difference between the value of  at the starting point (
0

 ) and 

at the end point 
0 f

  is given by 

 0f ig S F

           (B1) 

in which S  denotes the area enclosed by the rectangle and the strength of the gauge 

field is 

 ,F A A ig A A      
         (B2) 
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Echoing the formation of the Berry phase, the effect of parallel transport is to induce a 

non-vanishing rotation of   in internal space proportional to the strength of the gauge 

field. Likewise, the curvature tensor of GR may be motivated through similar arguments. 

Taking a vector V   on a round trip by parallel transport, the difference between the initial 

and final components of the vector amounts to 

 
1

2
V R V S   

     (B3) 

This equation faithfully replicates (B1) and signals the presence of a gravitational field, 

via the curvature tensor R
 .  The geometric analogy between gauge theory and General 

Relativity is captured in the table below. 

Gauge Theory General Relativity 

Gauge transformation Coordinate transformation 

Gauge group 
Group of coordinate 

transformations 

Gauge potential A  Connection coefficient 

  

Field strength F   Curvature tensor R

   

Comparison between the geometry of gauge and gravitational fields. 
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